The Novel Implication of Androgen in Diabetes-induced Alzheimer’s Disease

Juhyun Song¹*, Chaeyong Jung¹*, Oh Yoen Kim²

¹Department of Anatomy, Chonnam National University Medical School, Gwangju, ²Department of Food Science and Nutrition, Dong-A University, Busan, Korea

INTRODUCTION

Alzheimer’s disease (AD) is characterized by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau protein in the brain, leading to the increase in inflammation and neuronal loss. Recently, evidences to support the association between type 2 diabetes mellitus (T2DM) and AD have markedly increased by clinical researches and experimental studies. Reduced insulin action and impaired glucose metabolism in the brain leads to diabetes induced AD. Androgen, a male sex hormone, was known to regulate inflammatory response, Aβ deposition in AD, insulin signaling, and synaptic plasticity in brain. Clinical studies demonstrated that androgen deficiency results in the increased risk of AD and its severe progression in male subjects. We reviewed the significant evidences to support that low testosterone levels are linked to diabetes-induced AD based on previous studies. Thus, we highlight the therapeutic potential of androgen in diabetes induced AD. (J Lipid Atheroscler 2017 December;6(2):66-74)

Key Words: Androgen, Alzheimer’s disease, Insulin resistance, Inflammation, Cognitive decline

Received: November 24, 2017 | Corresponding Author: Oh Yoen Kim, Department of Food Sciences and Nutrition, Human Life Research Center, Dong-A University, 37 550 beon-gil Nakdong-daero, Saha-gu, Busan 49315, Korea
Revised: December 13, 2017 | Tel: +82-51-200-7326, Fax: +82-51-200-7353, E-mail: oykim@dau.ac.kr
Accepted: December 14, 2017 | *These authors contributed equally to this work.

Copyright ⓒ 2017 The Korean Society of Lipid and Atherosclerosis

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
found in the central nervous system (CNS) including forebrain, midbrain, and spinal cord. In CNS, androgen have multiple functions such as neuroprotective function, neurite growth, neurogenesis, and neuronal survival, and regulate physiological functions including emotion and cognition. Based on the previous researches, this review summarizes recent evidences regarding the role of androgen in diabetic induced AD, suggesting that androgen is associated with glucose metabolism, insulin signaling and cognitive decline in the brain.

THE ASSOCIATION BETWEEN DIABETES AND AD

In the T2DM, the impairment of glycemic control and insulin resistance triggers mild cognitive impairment (MCI). Recent study with functional magnetic resonance imaging reported that patients with T2DM have changed neuronal activity in broad brain regions related with cognitive function. Imaging studies showed increase of brain atrophy in patients with T2DM which is associated with cognitive decline. Also, the T2DM rat model showed the pathology of AD including neuronal loss, increased Aβ level, and hyperphosphorylated tau. In the insulin resistance induced AD transgenic mice, high fat diet triggers increase of Aβ accumulation and decrease of insulin degradation enzyme (IDE). APP/PS1 transgenic mice with administration of sucrose-supplemented water showed glucose intolerance, elevation of insulin levels, increase of Aβ deposition, and memory dysfunction. Dysregulation of insulin and glucose have been linked to increases of AD pathology, and the expression of insulin receptor was observed in the AD brain. Several clinical studies show that the treatment of T2DM leads to the improvement of AD pathologies such as cognitive deficit by decreasing Aβ levels and tau pathologies. One study demonstrated that diet induced obesity in the triple-transgenic mice model of AD showed excessive Aβ burden, and aggravation of behavior dysregulation.

Another study reported that the metabolic dysfunction and the acceleration of AD related pathologies were found in the insulin receptor substrate 2 knockout AD mice model. Based on the previous evidences, insulin resistance, glucose deregulation, and inflammation may be in the central mechanisms between the onset and progression of T2DM and AD.

AD AND LOW ANDROGEN

Androgen is a sex steroid hormone in men which exerts multiple physiological functions leading to maturation of reproductive systems. Testosterone, dihydrotestosterone (DHT), androstenedione, dehydroepiandrosterone (DHEA) and its sulphate (DHEAS) have been known as major androgens in males, and play an critical role in cognition, and their RNAs were observed in the AD cerebral cortex and hippocampus. Several studies reported that androgens play an important role in memory function in men, and low androgen level is directly linked to the onset of dementia, thus androgen deficiency could lead to neural dysfunction in mood and cognition. Low levels of free testosterone were also observed in the brain of AD patients. Furthermore, low levels of testosterone in blood or brain lead to the increased risk for developing AD. A strong association between low testosterone levels and insulin resistance was observed in men. In addition, low levels of testosterone were commonly found in the T2DM patients compared with non-diabetic controls. Therefore, therapy using testosterone may result in the reduction of T2DM features. Considering the previous evidences, low levels of testosterone may contribute to insulin resistance, and glucose deregulation in the AD brain.
ANDROGEN PROTECTS NEURONAL CELLS AND INVOLVES Aβ ACCUMULATION IN THE AD BRAIN

The accumulation of amyloid plaques is the neuropathological hallmarks of AD. According to the study which investigated the regulatory function of androgens on Aβ, APP metabolism and Aβ production in cortical neurons were regulated by testosterone levels in the brain. As mention above, androgen could modulate Aβ production in the AD brain. Furthermore, androgen contributes to the increase of neuronal viability in brain. Androgen depleted rats exhibited severe neuronal loss in the pyramidal layer of hippocampus as well as under oxidative stress or Aβ toxicity condition. One study demonstrated that androgens could activate PI3K signaling through intracellular androgen receptor, and ERK/CREB signaling in neurons. Testosterone could modulate neuronal damage under oxidative stress condition, and reduce neuronal apoptosis and autophagic cell death. Testosterone reduces neuronal apoptosis through the phosphorylation of ERK as well as through the activation of Bcl2 which increases neuron viability. Collectively, androgen could protect neuronal cell damage against oxidative stress in brain.

ANDROGEN RECEPTOR COULD CONTROL INSULIN RESISTANCE AND SYNAPTIC PLASTICITY IN THE AD BRAIN

Cross-sectional studies have reported an inverse
association between testosterone levels and insulin resistance in men. Increased insulin resistance was triggered in men with a 25% decrease of serum testosterone compared to normal men. Acute androgen deprivation could attenuate insulin sensitivity in healthy men, and reduction of total and free serum testosterone could lead to T2DM in men. Moreover, synaptic plasticity is a critical issue in learning and memory function. In the cerebral cortex of AD patients, alteration of synaptic plasticity occurs prior to formation of Aβ, and ultimately triggers cognitive deficits. It has been reported that androgen receptors are involved in memory and learning by involving synapse function. DHT could reduce the binding of N-methyl-D-aspartate (NMDA) receptor antagonist in hippocampus CA1 region, and control NMDA mediated depolarization in pyramidal neurons. Recent study reported that androgen inhibits reduction of hippocampal dendritic spine density in rats. Another study reported that testosterone promotes hippocampal synaptogenesis. Also, testosterone could enhance the expression of brain derived neurotrophic factor, leading to improvement in hippocampal dendritic spine density, and the phosphorylation of CREB to enhance synaptic plasticity. Androgens improve spine-synapse density in the CA1 of rodents. Taken together, androgen could improve insulin resistance by binding androgen receptor in brain, enhance synaptic failure, and promote synaptogenesis in the AD brain.

CONCLUSIONS

Here, we reviewed the role of androgen in diabetes induced AD. We highlight the therapeutic potential of androgen in diabetes induced AD brain including the improvement of insulin resistance, the inhibition of Aβ accumulation, the protection of neuronal cells against oxidative stress, and the suppression of synaptic dysfunction. Given that testosterone supplementation could improve cognitive decline and memory function, we speculate that androgen can be a good target hormone to alleviate the neuropathology in diabetes induced AD.

CONFLICTS OF INTEREST

The authors have no conflict of interest to declare.

ACKNOWLEDGEMENTS

This study was supported by the Brain Research Program through the National Research Foundation of Korea funded by a grant from 2016R1D1A1B03930394.

REFERENCES

7. Cha DS, Carvalho AF, Rosenblat JD, Ali MM, McIntyre RS. Major depressive disorder and type II diabetes mellitus: mechanisms underlying risk for Alzheimer’s disease. CNS Neurol Disord Drug Targets 2014;13:1740-

73. Park SY, Tournell C, Sinjoanu RC, Ferreira A. Caspase-3- and calcineurin-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-

